Linear mixed-effects models are widely used in analyzing clustered or repeated measures data. We propose a quasi-likelihood approach for estimation and inference of the unknown parameters in linear mixed-effects models with high-dimensional fixed effects. The proposed method is applicable to general settings where the dimension of the random effects and the cluster sizes are possibly large. Regarding the fixed effects, we provide rate optimal estimators and valid inference procedures that do not rely on the structural information of the variance components. We also study the estimation of variance components with high-dimensional fixed effects in general settings. The algorithms are easy to implement and computationally fast. The proposed methods are assessed in various simulation settings and are applied to a real study regarding the associations between body mass index and genetic polymorphic markers in a heterogeneous stock mice population.


翻译:在分析集束或重复测量数据时,广泛使用线性混合效应模型。我们建议采用准类似方法估计和推断具有高维固定效应的线性混合效应模型中的未知参数。拟议方法适用于随机效应和组群大小可能很大的一般环境。关于固定效应,我们提供不依赖差异成分结构信息的速率最佳估计值和有效推论程序。我们还研究一般环境中具有高维固定效应的差异成分的估计。算法易于实施和快速计算。拟议方法在各种模拟环境中进行评估,并应用于关于多变性小鼠群体积中身体质量指数和遗传多形态标志之间联系的实际研究。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月10日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月10日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员