Linear mixed-effects models are widely used in analyzing clustered or repeated measures data. We propose a quasi-likelihood approach for estimation and inference of the unknown parameters in linear mixed-effects models with high-dimensional fixed effects. The proposed method is applicable to general settings where the dimension of the random effects and the cluster sizes are possibly large. Regarding the fixed effects, we provide rate optimal estimators and valid inference procedures that do not rely on the structural information of the variance components. We also study the estimation of variance components with high-dimensional fixed effects in general settings. The algorithms are easy to implement and computationally fast. The proposed methods are assessed in various simulation settings and are applied to a real study regarding the associations between body mass index and genetic polymorphic markers in a heterogeneous stock mice population.
翻译:在分析集束或重复测量数据时,广泛使用线性混合效应模型。我们建议采用准类似方法估计和推断具有高维固定效应的线性混合效应模型中的未知参数。拟议方法适用于随机效应和组群大小可能很大的一般环境。关于固定效应,我们提供不依赖差异成分结构信息的速率最佳估计值和有效推论程序。我们还研究一般环境中具有高维固定效应的差异成分的估计。算法易于实施和快速计算。拟议方法在各种模拟环境中进行评估,并应用于关于多变性小鼠群体积中身体质量指数和遗传多形态标志之间联系的实际研究。