Continual Test-Time Adaptation (CTTA) aims to adapt the source model to continually changing unlabeled target domains without access to the source data. Existing methods mainly focus on model-based adaptation in a self-training manner, such as predicting pseudo labels for new domain datasets. Since pseudo labels are noisy and unreliable, these methods suffer from catastrophic forgetting and error accumulation when dealing with dynamic data distributions. Motivated by the prompt learning in NLP, in this paper, we propose to learn an image-level visual domain prompt for target domains while having the source model parameters frozen. During testing, the changing target datasets can be adapted to the source model by reformulating the input data with the learned visual prompts. Specifically, we devise two types of prompts, i.e., domains-specific prompts and domains-agnostic prompts, to extract current domain knowledge and maintain the domain-shared knowledge in the continual adaptation. Furthermore, we design a homeostasis-based prompt adaptation strategy to suppress domain-sensitive parameters in domain-invariant prompts to learn domain-shared knowledge more effectively. This transition from the model-dependent paradigm to the model-free one enables us to bypass the catastrophic forgetting and error accumulation problems. Experiments show that our proposed method achieves significant performance gains over state-of-the-art methods on four widely-used benchmarks, including CIFAR-10C, CIFAR-100C, ImageNet-C, and VLCS datasets.
翻译:持续测试-时间适应(CTTA)旨在使源模型适应不断变化的源模型,以适应没有源数据访问的无标签目标领域。现有方法主要侧重于以自我培训的方式进行基于模型的适应,如预测新的域数据集的假标签。由于伪标签吵杂和不可靠,在处理动态数据分布时,这些方法会遭受灾难性的遗忘和错误积累。在NLP的迅速学习激励下,我们在本文件中提议为目标域学习一个基于图像水平的可视域,同时冻结源模型参数。在测试期间,改变的目标数据集可以以自我培训的方式侧重于基于模型的适应源模型的模式,通过用已学的视觉提示来重新配置输入数据。具体地说,我们设计了两类提示,即特定域的提示和领域不可知性提示,以获取当前域知识,并在持续适应中保持共享的知识。此外,我们还提议了基于软软软软软的快速适应战略,以抑制对域模型的参数。在测试期间,改变的目标数据集可以通过重新配置输入源共享的知识来适应源模型模式-C的这一过渡模式-摆脱模式-BRA型模型-BC系统模式-BRER法的进度模式-BA-C的进度模式的进度模式-BS-BS-BS-BS-S-BRARAFS-S-B-B-C-C-C-C-C-B-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-BROFD-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-IFRAFRAFRAL-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-IFRAL-C-C-C-C-C-C-C-C-C-C-C-C-