This paper proposes a novel framework for certifying the fairness of predictive models trained on biased data. It draws from query answering for incomplete and inconsistent databases to formulate the problem of consistent range approximation (CRA) of fairness queries for a predictive model on a target population. The framework employs background knowledge of the data collection process and biased data, working with or without limited statistics about the target population, to compute a range of answers for fairness queries. Using CRA, the framework builds predictive models that are certifiably fair on the target population, regardless of the availability of external data during training. The framework's efficacy is demonstrated through evaluations on real data, showing substantial improvement over existing state-of-the-art methods.
翻译:本文提出了一个新的框架,用以证明根据偏差数据培训的预测模型的公平性,它从对不完整和不一致数据库的查询中提取出一个新框架,以提出目标人口预测模型的一致范围近似(CRA)公平性查询问题,该框架利用数据收集过程和偏差数据的背景知识,与目标人口一起或在没有有限统计数据的情况下,计算一系列公平性查询的答案。框架利用CRA,构建了对目标人口可以证实公平的预测模型,而不论培训期间是否有外部数据。框架的效力通过对真实数据的评价而得到证明,表明比现有最新方法有了很大的改进。