Network slicing is a promising technology that allows mobile network operators to efficiently serve various emerging use cases in 5G. It is challenging to optimize the utilization of network infrastructures while guaranteeing the performance of network slices according to service level agreements (SLAs). To solve this problem, we propose SafeSlicing that introduces a new constraint-aware deep reinforcement learning (CaDRL) algorithm to learn the optimal resource orchestration policy within two steps, i.e., offline training in a simulated environment and online learning with the real network system. On optimizing the resource orchestration, we incorporate the constraints on the statistical performance of slices in the reward function using Lagrangian multipliers, and solve the Lagrangian relaxed problem via a policy network. To satisfy the constraints on the system capacity, we design a constraint network to map the latent actions generated from the policy network to the orchestration actions such that the total resources allocated to network slices do not exceed the system capacity. We prototype SafeSlicing on an end-to-end testbed developed by using OpenAirInterface LTE, OpenDayLight-based SDN, and CUDA GPU computing platform. The experimental results show that SafeSlicing reduces more than 20% resource usage while meeting SLAs of network slices as compared with other solutions.


翻译:网络断层是一种很有希望的技术,它使移动网络操作员能够高效率地为5G中各种新出现的使用案例服务。 优化网络基础设施的利用,同时根据服务级协议保证网络切片的性能是一项挑战。 为了解决这个问题,我们提议安全切片,引入一种新的限制意识深度强化学习(CadRL)算法,在两个步骤中学习最佳资源调控政策,即模拟环境中的离线培训,与真正的网络系统进行在线学习。在优化资源调控时,我们纳入了对利用Lagrangian乘数奖励功能中切片的统计性能的限制,并通过政策网络解决Lagrangian放松的问题。为了满足系统能力方面的限制,我们设计了一个限制网络,将政策网络产生的潜在行动映射到调控行动中,使分配给网络切片的总资源不超过系统的能力。我们在使用OpenAir Interface LTE、OpenDayLight-SDN和CUDAP 资源定位平台比SAL-LUDA更多的实验结果,同时将SAL-LYS-LAPILA 系统比S的资源计算平台显示更多的实验性结果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2021年6月24日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员