Conversation designers continue to face significant obstacles when creating production quality task-oriented dialogue systems. The complexity and cost involved in schema development and data collection is often a major barrier for such designers, limiting their ability to create natural, user-friendly experiences. We frame the classification of user intent as the generation of a canonical form, a lightweight semantic representation using natural language. We show that canonical forms offer a promising alternative to traditional methods for intent classification. By tuning soft prompts for a frozen large language model, we show that canonical forms generalize very well to new, unseen domains in a zero- or few-shot setting. The method is also sample-efficient, reducing the complexity and effort of developing new task-oriented dialogue domains.
翻译:对话设计师在创建高质量生产任务导向对话系统时继续面临重大障碍。计划开发和数据收集的复杂性和成本往往成为设计师的主要障碍,限制了他们创造自然、方便用户的经验的能力。我们将用户意图的分类设定为生成一种卡通形式,一种使用自然语言的轻量的语义表达方式。我们表明,卡通形式为传统意图分类方法提供了很有希望的替代方法。通过调试软提示,以冷冻大型语言模式,我们显示,卡通形式在零光或少光的环境下将新、隐蔽的领域广泛归纳为非常不错的。这种方法也具有抽样效率,降低了开发新的任务导向对话领域的复杂性和努力。