Predictive modeling and time-pattern analysis are increasingly critical in this swiftly shifting retail environment to improve operational efficiency and informed decision-making. This paper reports a comprehensive application of state-of-the-art machine learning to the retailing domain with a specific focus on association rule mining, sequential pattern mining, and time-series forecasting. Association rules: Relationship Mining This provides the key product relationships and customer buying patterns that form the basis of individually tailored marketing campaigns. Sequential pattern mining: Using the PrefixSpan algorithm, it identifies frequent sequences of purchasing products-extremely powerful insights into consumer behavior and also better management of the inventories. What is applied for sales trend forecasting models Prophet applies on historical transaction data over seasonality, holidays, and long-term growth. The forecast results allow predicting demand variations, thus helping in proper inventory alignment and avoiding overstocking or understocking of inventory. Our results are checked through the help of metrics like MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) to ensure our predictions are strong and accurate. We will combine the aspects of all of these techniques to prove how predictive modeling and temporal pattern analysis can help optimize control over inventory, enhance marketing effectiveness, and position retail businesses as they rise to ever greater heights. This entire methodology demonstrates the flexibility with which data-driven strategies can be leveraged to revitalize traditional retailing practices.
翻译:暂无翻译