Intelligent reflecting surfaces (IRSs) are promising enablers for next-generation wireless communications due to their reconfigurability and high energy efficiency in improving poor propagation condition of channels, e.g., limited scattering environment. However, most existing works assumed full-rank channels requiring rich scatters, which may not be available in practice. To analyze the impact of rank-deficient channels and mitigate the ensued performance loss, we consider a large-scale IRS-aided MIMO system with statistical channel state information (CSI), where the double-scattering channel is adopted to model rank deficiency. By leveraging random matrix theory (RMT), we first derive a deterministic approximation (DA) of the ergodic rate with low computational complexity and prove the existence and uniqueness of the DA parameters. Then, we propose an alternating optimization algorithm for maximizing the DA with respect to phase shifts and signal covariance matrices. Numerical results will show that the DA is tight and our proposed method can effectively mitigate the performance loss induced by channel rank deficiency.
翻译:智能反射表面(IRS)对于下一代无线通信来说是很有希望的助推器,因为这些无线通信在改善频道的恶劣传播条件(例如,分散环境有限)方面是可调和和高能效的,例如,分散环境有限。然而,大多数现有工程都假设了需要大量散射的全声频道,而实际上可能没有这种渠道。为了分析低级频道的影响并减轻随后的性能损失,我们认为一个具有统计频道国家信息(CSI)的大规模IRS援助的MIMO系统,在这个系统中采用双位隔热频道来模拟排位不足。我们首先利用随机矩阵理论(RMT)来得出ergodic 比率的确定性近似法(DA), 并证明DA参数的存在和独特性。然后,我们建议采用一种交替优化算法, 使DA在阶段轮班和信号共变矩阵方面最大化。数字结果将显示,DA是紧凑的,我们提出的方法可以有效减轻频道排位不足造成的性能损失。