While designing sustainable and resilient urban built environment is increasingly promoted around the world, significant data gaps have made research on pressing sustainability issues challenging to carry out. Pavements are known to have strong economic and environmental impacts; however, most cities lack a spatial catalog of their surfaces due to the cost-prohibitive and time-consuming nature of data collection. Recent advancements in computer vision, together with the availability of street-level images, provide new opportunities for cities to extract large-scale built environment data with lower implementation costs and higher accuracy. In this paper, we propose CitySurfaces, an active learning-based framework that leverages computer vision techniques for classifying sidewalk materials using widely available street-level images. We trained the framework on images from New York City and Boston and the evaluation results show a 90.5% mIoU score. Furthermore, we evaluated the framework using images from six different cities, demonstrating that it can be applied to regions with distinct urban fabrics, even outside the domain of the training data. CitySurfaces can provide researchers and city agencies with a low-cost, accurate, and extensible method to collect sidewalk material data which plays a critical role in addressing major sustainability issues, including climate change and surface water management.
翻译:在设计可持续和具有复原力的城市建筑环境的同时,世界各地的设计工作日益得到推广,但数据差距巨大,使得对紧迫的可持续性问题的研究变得十分艰巨,众所周知,建筑工程具有巨大的经济和环境影响;然而,由于数据收集的成本和耗时性,大多数城市缺乏其表面空间目录;最近计算机愿景的进展,加上街道图像的提供,为城市提供了新的机会,以提取大型建筑环境数据,降低执行成本,提高准确性;在本文件中,我们提议城市生态系统,这是一个积极的学习框架,利用计算机视觉技术,利用广泛存在的街头图像对人行道材料进行分类;我们培训了纽约市和波士顿的图像框架,评价结果显示有90.5%的MIOU得分;此外,我们利用来自六个不同城市的图像对框架进行了评价,表明该框架可以适用于城市结构不同的区域,甚至培训数据范围以外。城市生态系统可以向研究人员和城市机构提供低成本、准确和可扩展的方法,利用计算机视觉技术对人行道材料进行分类;我们培训了纽约和波士顿的图像框架,并且评价结果显示有90.5%的MIU得分;此外,我们利用来自六个不同城市的图像,表明,即使在培训数据领域以外也可以应用于具有不同城市结构的区域;城市结构的地区,城市生态系统可以向研究人员和城市机构提供低成本、准确和可扩展方法,用以收集地面数据,从而在地面管理中发挥关键作用。