Uncovering data generative factors is the ultimate goal of disentanglement learning. Although many works proposed disentangling generative models able to uncover the underlying generative factors of a dataset, so far no one was able to uncover OOD generative factors (i.e., factors of variations that are not explicitly shown on the dataset). Moreover, the datasets used to validate these models are synthetically generated using a balanced mixture of some predefined generative factors, implicitly assuming that generative factors are uniformly distributed across the datasets. However, real datasets do not present this property. In this work we analyse the effect of using datasets with unbalanced generative factors, providing qualitative and quantitative results for widely used generative models. Moreover, we propose TC-VAE, a generative model optimized using a lower bound of the joint total correlation between the learned latent representations and the input data. We show that the proposed model is able to uncover OOD generative factors on different datasets and outperforms on average the related baselines in terms of downstream disentanglement metrics.
翻译:揭示数据生成因素是解缠学习的终极目标。虽然许多作品提出了能够揭示数据集潜在生成因素的解缠生成模型,但迄今为止,没有人能够揭示OOD生成因素(即,在数据集上未明确定义的变化因素)。此外,用于验证这些模型的数据集使用平衡的某些预定义生成因素的混合物合成,隐含地假设生成因素在数据集上是均匀分布的。然而,真实数据集并不具备这种特性。在本文中,我们分析了使用不平衡的生成因素数据集的影响,并为广泛使用的生成模型提供了定性和定量结果。此外,我们提出了TC-VAE,一种生成模型,采用所学习的潜在表示和输入数据之间的联合总相关性的下限进行优化。我们证明所提出的模型能够在不同数据集上揭示OOD生成因素,并且在下游解缠指标方面平均优于相关基线。