Functional principal component analysis (FPCA) has played an important role in the development of functional time series analysis. This note investigates how FPCA can be used to analyze cointegrated functional time series and proposes a modification of FPCA as a novel statistical tool. Our modified FPCA not only provides an asymptotically more efficient estimator of the cointegrating vectors, but also leads to novel FPCA-based tests for examining essential properties of cointegrated functional time series.
翻译:功能性主成分分析(FPCA)在发展函数时间序列分析中发挥了重要作用。本研究探讨了如何利用FPCA分析协整函数时间序列,并提出了一种修改后的FPCA作为新的统计工具。我们修改后的FPCA不仅提供了协整向量的渐近更高效的估计值,而且还导致了基于FPCA的新方法用于检查协整函数时间序列的基本属性。