In this paper, an online multiscale model reduction method is presented for stochastic partial differential equations (SPDEs) with multiplicative noise, where the diffusion coefficient is spatially multiscale and the noise perturbation nonlinearly depends on the diffusion dynamics. It is necessary to efficiently compute all possible trajectories of the stochastic dynamics for quantifying model's uncertainty and statistic moments. The multiscale diffusion and nonlinearity may cause the computation intractable. To overcome the multiscale difficulty, a constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) is used to localize the computation and obtain an effective coarse model. However, the nonlinear terms are still defined on a fine scale space after the Galerkin projection of CEM-GMsFEM is applied to the nonlinear SPDEs. This significantly impacts on the simulation efficiency by CEM-GMsFEM. To this end, a stochastic online discrete empirical interpolation method (DEIM) is proposed to treat the stochastic nonlinearity. The stochastic online DEIM incorporates offline snapshots and online snapshots. The offline snapshots consist of the nonlinear terms at the approximate mean of the stochastic dynamics and are used to construct an offline reduced model. The online snapshots contain some information of the current new trajectory and are used to correct the offline reduced model in an increment manner. The stochastic online DEIM substantially reduces the dimension of the nonlinear dynamics and enhances the prediction accuracy for the reduced model. Thus, the online multiscale model reduction is constructed by using CEM-GMsFEM and the stochastic online DEIM. A priori error analysis is carried out for the nonlinear SPDEs. We present a few numerical examples with diffusion in heterogeneous porous media and show the effectiveness of the proposed model reduction.
翻译:在本文中,对具有多复制性噪音的随机局部偏差方程式(SPDES)展示了一种在线多尺度模型递减方法,在这种方程式中,扩散系数是空间多尺度的,噪音扰动非线性取决于扩散动态。有必要高效率地计算所有可能的随机动态轨迹,以量化模型的不确定性和统计时点。多尺度的传播和非线性可能会导致计算不易处理。为了克服多尺度的困难,使用限制能量将通用的多尺度有限元素(CEM-GMSFEM)方法(CEM-GMSFEM )本地化,以便实现计算,并获得一个有效的准确的多尺度的精确度。然而,非线性术语仍然在CEM-GMSEM 的Galeralkin投影后,在一个细尺度空间上定义。这对CEM-GMESEM 的模拟效率产生极大影响。对于计算模型的多尺度扩散和非线外线性实验性内分解法方法(DEIM ) 用来处理当前非线性非线性模拟非线内断断分数的计算。 在SOMIM 上, 将S 的线性线性线上显示SIM 的直径线性软化软化的线性软化的线性软化线性软化软化线性软化线性软化软化线下显示的软化的线性软化线性软化的线性软化的线性软化线性软化线性软化的线性软化的线性软化的线性软化软化的线性变现显示的软化的线性变现的线性变现的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的软化的