In 1981, Tuza conjectured that the cardinality of a minimum set of edges that intersects every triangle of a graph is at most twice the cardinality of a maximum set of edge-disjoint triangles. This conjecture have been proved for several important graph classes, as planar graphs, tripartite graphs, among others. However, it remains open on other important classes of graphs, as chordal graphs. Furthermore, it remains open for main subclasses of chordal graphs, as split graphs and interval graphs. In this paper, we show that Tuza's conjecture is valid for co-chain graphs with even number of vertices in both sides of the partition, a known subclass of interval graphs.
翻译:暂无翻译