A shortcoming of batch reinforcement learning is its requirement for rewards in data, thus not applicable to tasks without reward functions. Existing settings for lack of reward, such as behavioral cloning, rely on optimal demonstrations collected from humans. Unfortunately, extensive expertise is required for ensuring optimality, which hinder the acquisition of large-scale data for complex tasks. This paper addresses the lack of reward in a batch reinforcement learning setting by learning a reward function from preferences. Generating preferences only requires a basic understanding of a task. Being a mental process, generating preferences is faster than performing demonstrations. So preferences can be collected at scale from non-expert humans using crowdsourcing. This paper tackles a critical challenge that emerged when collecting data from non-expert humans: the noise in preferences. A novel probabilistic model is proposed for modelling the reliability of labels, which utilizes labels collaboratively. Moreover, the proposed model smooths the estimation with a learned reward function. Evaluation on Atari datasets demonstrates the effectiveness of the proposed model, followed by an ablation study to analyze the relative importance of the proposed ideas.
翻译:批量强化学习的缺陷在于它要求数据奖励,因此不适用于没有奖赏的任务; 由于缺乏奖赏的现有环境,例如行为克隆,依赖从人类收集的最佳演示; 不幸的是,为确保最佳性,需要大量的专门知识,这妨碍了为复杂任务获取大规模数据; 本文通过从偏好中学习奖励功能,解决批量强化学习环境中缺乏奖励的问题; 产生优惠只需要对任务的基本理解。 作为一个心理过程,产生偏好比进行演示要快。 因此,可以利用众包收集非专家人类的优待。 本文应对了在收集非专家人类数据时出现的重大挑战:偏好中的噪音。 提出了一个新的概率模型,用于模拟标签的可靠性,该模型以协作的方式使用标签。 此外, 拟议的模型以学习的奖励功能来顺利估算估算。 对阿塔里数据集的评价显示了拟议模型的有效性,随后是分析拟议构想的相对重要性的模拟研究。