For semantic segmentation in urban scene understanding, RGB cameras alone often fail to capture a clear holistic topology, especially in challenging lighting conditions. Thermal signal is an informative additional channel that can bring to light the contour and fine-grained texture of blurred regions in low-quality RGB image. Aiming at RGB-T (thermal) segmentation, existing methods either use simple passive channel/spatial-wise fusion for cross-modal interaction, or rely on heavy labeling of ambiguous boundaries for fine-grained supervision. We propose a Spatial-aware Demand-guided Recursive Meshing (SpiderMesh) framework that: 1) proactively compensates inadequate contextual semantics in optically-impaired regions via a demand-guided target masking algorithm; 2) refines multimodal semantic features with recursive meshing to improve pixel-level semantic analysis performance. We further introduce an asymmetric data augmentation technique M-CutOut, and enable semi-supervised learning to fully utilize RGB-T labels only sparsely available in practical use. Extensive experiments on MFNet and PST900 datasets demonstrate that SpiderMesh achieves new state-of-the-art performance on standard RGB-T segmentation benchmarks.


翻译:在对城市景象的了解中,光是RGB摄像头往往无法捕捉出清晰的整体地形学,特别是在具有挑战性的照明条件下。热信号是一个信息化的额外渠道,能够点亮低质量RGB图像中模糊区域的轮廓和细微磨痕质。针对RGB-T(热)分解,现有方法要么使用简单的被动通道/空间-空间混合来进行跨模式互动,要么依靠对模糊界限的重标签来进行细微监督。我们提议了一个空间觉醒需求引导的重新扫描仪(SpiderMesh)框架,这一框架可以通过需求导向的目标掩码算法,积极补偿在光学障碍区域中光学障碍区域不适当的背景语义;(2)改进多式语系特征,用循环式中间线来改进像素级静脉冲分析的性能。我们进一步引入不对称的数据增强技术M-Cutut,并允许半超超式学习充分利用RGB-T标签,在实际应用中只能以稀暗方式使用新的Smal-M-MS-MS-SDS-S-SDSD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SALD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-S-SD-SD-SD-SD-S-S-S-SD-SD-S-SD-SD-SD-SD-SD-SD-S-SD-SDSD-SD-SDSDSDSDSDSDSDSDSD-SD-SB-SD-SBSD-S-S-S-S-SD-S-S-S-S-SD-SD-SD-S-S-SD-SD-SD-SD-S</s>

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员