Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We provide a central limit theorem for general additive functionals of BMC, and prove the existence of three regimes. This corresponds to a competition between the reproducing rate (each individual has two children) and the ergodicity rate for the evolution of the trait. This is in contrast with the work of Guyon (2007), where the considered additive functionals are sums of martingale increments, and only one regime appears. Our result can be seen as a discrete time version, but with general trait evolution, of results in the time continuous setting of branching particle system from Adamczak and Mi\l{}o\'{s} (2015), where the evolution of the trait is given by an Ornstein-Uhlenbeck process.
翻译:马可夫链条(BMC)是由一整棵二进制树组成的马可夫链条(Markov),由一整棵二进制树组成,它代表着一个人有两个孩子的人口特征的演变。我们为BMC的一般添加功能提供了一个核心限制理论,并证明存在三个制度。这相当于复制率(每个个人有两个孩子)和特性演变的惯性率之间的竞争。这与Guyon(2007年)的工作形成鲜明对比,因为Guyon(2007年)认为的添加功能是马丁格尔增量的总和,只有一种制度出现。我们的结果可以被视为离散的时间版本,但具有一般特性的演变,是亚当察克和米尔乔瓦茨(Mi\lço)的粒子系统持续时间设置的结果,其变化是由Ornstein-Uhlenbeck进程提供的。