Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We provide a central limit theorem for general additive functionals of BMC, and prove the existence of three regimes. This corresponds to a competition between the reproducing rate (each individual has two children) and the ergodicity rate for the evolution of the trait. This is in contrast with the work of Guyon (2007), where the considered additive functionals are sums of martingale increments, and only one regime appears. Our result can be seen as a discrete time version, but with general trait evolution, of results in the time continuous setting of branching particle system from Adamczak and Mi\l{}o\'{s} (2015), where the evolution of the trait is given by an Ornstein-Uhlenbeck process.


翻译:马可夫链条(BMC)是由一整棵二进制树组成的马可夫链条(Markov),由一整棵二进制树组成,它代表着一个人有两个孩子的人口特征的演变。我们为BMC的一般添加功能提供了一个核心限制理论,并证明存在三个制度。这相当于复制率(每个个人有两个孩子)和特性演变的惯性率之间的竞争。这与Guyon(2007年)的工作形成鲜明对比,因为Guyon(2007年)认为的添加功能是马丁格尔增量的总和,只有一种制度出现。我们的结果可以被视为离散的时间版本,但具有一般特性的演变,是亚当察克和米尔乔瓦茨(Mi\lço)的粒子系统持续时间设置的结果,其变化是由Ornstein-Uhlenbeck进程提供的。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月16日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月16日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员