A simple problem is studied in which there are N boxes and a prize known to be in one of the boxes. Furthermore, the probability that the prize is in any box is given. It is desired to find the prize with minimal expected work, where it takes one unit of work to open a box and look inside. The paper establishes bounds on the minimal work in terms of the $p=1/2$ H\"older norm of the probability density and in terms of the entropy of the probability density. We also introduce the notion of "Cartesian product" of problems, and determine the asymptotic behavior of the minimal work for the $n$th power of a problem. (This article is a newly typeset version of an internal publication written in 1984. The second author passed away on November 12, 2020, and his estate has approved the submission of this paper.)
翻译:研究一个简单的问题, 即是否有N箱和一个已知的奖品在其中一个盒中。 此外, 奖品在任何一个盒子中的概率是给的。 希望找到奖品时能做最起码的预期工作, 需要用一个单位的工作才能打开一个盒子, 并查看里面。 论文根据概率密度的$p=1/2$ H\"老规范以及概率密度的英特罗比, 确定了最小的作品的界限。 我们还引入了问题“ 笛克产物” 的概念, 并确定了问题力为$nth的微小作品的不稳行为 。 ( 文章是1984年撰写的内部出版物的新型版本。 第二作者于2020年11月12日去世, 他的财产批准提交这份文件。 )