America has a massive railway system. As of 2006, U.S. freight railroads have 140,490 route- miles of standard gauge, but maintaining such a huge system and eliminating any dangers, like reduced track stability and poor drainage, caused by railway ballast degradation require huge amount of labor. The traditional way to quantify the degradation of ballast is to use an index called Fouling Index (FI) through ballast sampling and sieve analysis. However, determining the FI values in lab is very time-consuming and laborious, but with the help of recent development in the field of computer vision, a novel method for a potential machine-vison based ballast inspection system can be employed that can hopefully replace the traditional mechanical method. The new machine-vision approach analyses the images of the in-service ballasts, and then utilizes image segmentation algorithm to get ballast segments. By comparing the segment results and their corresponding FI values, this novel method produces a machine-vision-based index that has the best-fit relation with FI. The implementation details of how this algorithm works are discussed in this report.


翻译:美国拥有庞大的铁路系统。 截至2006年,美国货运铁路拥有140,490英里的路线标准仪表,但维持如此庞大的系统并消除铁路压舱退化造成的轨道稳定性下降和排水不良等任何危险需要大量人力。 量化压舱退化的传统方法是通过压载取样和筛选分析,使用一个叫做Fouling指数(FI)的指数。然而,在实验室中确定FI值是非常费时和费力的,但是在计算机视野领域最近发展的帮助下,可以使用一个潜在的机视压舱检查系统的新颖方法,该方法有望取代传统的机械方法。新的机视方法分析了机载压舱的图像,然后使用图像分割算法获得压舱部分。通过比较分段结果和相应的FI值,这一新方法产生了一个基于机器的指数,该指数与FI的关系最合适。本报告将讨论这一算法工作的实施细节。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员