Tail-sitter vertical takeoff and landing (VTOL) unmanned aerial vehicles (UAVs) have the capability of hovering and performing efficient level flight with compact mechanical structures. We present a unified controller design for such UAVs, based on recurrent neural networks. An advantage of this design method is that the various flight modes (i.e., hovering, transition and level flight) of a VTOL UAV are controlled in a unified manner, as opposed to treating them separately and in the runtime switching one from another. The proposed controller consists of an outer-loop position controller and an inner-loop attitude controller. The inner-loop controller is composed of a proportional attitude controller and a loop-shaping linear angular rate controller. For the outer-loop controller, we propose a nonlinear solver to compute the desired attitude and thrust, based on the UAV dynamics and an aerodynamic model, in addition to a cascaded PID controller for the position and velocity tracking. We employ a recurrent neural network (RNN) to approximate the behavior of the nonlinear solver, which suffers from high computational complexity. The proposed RNN has negligible approximation errors, and can be implemented in real-time (e.g., 50 Hz). Moreover, the RNN generates much smoother outputs than the nonlinear solver. We provide an analysis of the stability and robustness of the overall closed-loop system. Simulation and experiments are also presented to demonstrate the effectiveness of the proposed method.


翻译:VTOL型无人驾驶飞行器(无人驾驶飞行器)的垂直起飞和着陆(VTOL)具有在紧凑机械结构下悬浮和高效水平飞行的能力。我们根据经常性神经网络为这种无人驾驶飞行器提供统一的控制器设计。这种设计方法的一个优点是,VTOL型无人驾驶飞行器的各种飞行模式(即悬浮、过渡和水平飞行)都以统一的方式加以控制,而不是分别处理和在运行时相互转换。拟议的控制器由外部环流定位控制器和内环流姿态控制器组成。内环流控制器由比例式姿态控制器和环形直线直角控制器组成。对于外环形控制器而言,我们提出的一个非线性解决方案的优点是,根据UAV的动态和空气动力模型,除了对定位和速度跟踪的级联PID控制器外,我们还采用一个经常性的神经网络,以近似非线性求解器的行为举,该软件具有较高的计算效率,而且具有高度的精确度,并且具有超度的精确度分析结果。拟议的 RNNU 和S 的模拟模拟模拟模拟模拟模拟模拟模拟, 和模拟模拟的模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟的模拟分析是可操作的模拟的模拟。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Learning to infer in recurrent biological networks
Arxiv
0+阅读 · 2021年5月31日
Arxiv
0+阅读 · 2021年5月27日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
3+阅读 · 2018年10月25日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Top
微信扫码咨询专知VIP会员