Identifying independently moving objects is an essential task for dynamic scene understanding. However, traditional cameras used in dynamic scenes may suffer from motion blur or exposure artifacts due to their sampling principle. By contrast, event-based cameras are novel bio-inspired sensors that offer advantages to overcome such limitations. They report pixelwise intensity changes asynchronously, which enables them to acquire visual information at exactly the same rate as the scene dynamics. We develop a method to identify independently moving objects acquired with an event-based camera, i.e., to solve the event-based motion segmentation problem. We cast the problem as an energy minimization one involving the fitting of multiple motion models. We jointly solve two subproblems, namely event cluster assignment (labeling) and motion model fitting, in an iterative manner by exploiting the structure of the input event data in the form of a spatio-temporal graph. Experiments on available datasets demonstrate the versatility of the method in scenes with different motion patterns and number of moving objects. The evaluation shows state-of-the-art results without having to predetermine the number of expected moving objects. We release the software and dataset under an open source licence to foster research in the emerging topic of event-based motion segmentation.


翻译:独立移动天体是动态场景理解的一项基本任务。然而,动态场景中使用的传统相机可能因其取样原则而受到运动模糊或暴露文物的影响。相反,以事件为基础的相机是具有生物启发的新型传感器,具有克服这些限制的好处。它们无休无止地报告像素的强度变化,从而使它们能够以与场景动态完全相同的速率获得视觉信息。我们开发了一种方法来识别以事件为基础的相机获得的物体独立移动的方法,即解决以事件为基础的运动分割问题。我们把这个问题当作一个能量最小化的问题,涉及安装多个运动模型。我们共同解决两个子问题,即事件集群分配(标签)和运动模型安装,以迭接的方式,利用输入事件数据的结构,以空间时速图的形式进行。我们对可用数据集进行实验,以不同运动模式和移动天体数目的场景显示该方法的多功能性。我们通过评估,在不预先确定预期移动天体数量的情况下,将状态显示其结果。我们共同解决两个子问题,即事件集束(活动集)和运动模型的模型,以迭交式方式,我们根据开发了正在开始的磁段的研究,以推进的轨道,我们根据开发了正在开始一个数据源。

0
下载
关闭预览

相关内容

3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
53+阅读 · 2020年3月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员