The COVID19 pandemic globally and significantly has affected the life and health of many communities. The early detection of infected patients is effective in fighting COVID19. Using radiology (X-Ray) images is perhaps the fastest way to diagnose the patients. Thereby, deep Convolutional Neural Networks (CNNs) can be considered as applicable tools to diagnose COVID19 positive cases. Due to the complicated architecture of a deep CNN, its real-time training and testing become a challenging problem. This paper proposes using the Extreme Learning Machine (ELM) instead of the last fully connected layer to address this deficiency. However, the parameters' stochastic tuning of ELM's supervised section causes the final model unreliability. Therefore, to cope with this problem and maintain network reliability, the sine-cosine algorithm was utilized to tune the ELM's parameters. The designed network is then benchmarked on the COVID-Xray-5k dataset, and the results are verified by a comparative study with canonical deep CNN, ELM optimized by cuckoo search, ELM optimized by genetic algorithm, and ELM optimized by whale optimization algorithm. The proposed approach outperforms comparative benchmarks with a final accuracy of 98.83% on the COVID-Xray-5k dataset, leading to a relative error reduction of 2.33% compared to a canonical deep CNN. Even more critical, the designed network's training time is only 0.9421 milliseconds and the overall detection test time for 3100 images is 2.721 seconds.


翻译:COVID19 流行病在全球和显著地影响了许多社区的生活和健康。 早期发现受感染的病人在与COVID1919的斗争中是有效的。 使用辐射学(X光)图像可能是诊断病人的最快方法。 因此, 深层革命神经网络(CNNs)可以被视为用于诊断COVID19 积极案例的适用工具。 由于远端CNN的复杂结构, 其实时培训和测试成为具有挑战性的问题。 本文提议使用极端学习机(ELM)而不是最后一个完全相连的层来弥补这一缺陷。 然而, 使用ELM 监管部分的参数的测试调整或许是最后模型不可靠的。 因此, 为了应对这一问题并保持网络的可靠性, 深层神经神经网络网络(NCR) 的精密性调整(ELM), 以 COVID- Xray-521 数据集为基准, 其结果只能通过与CANIC 深度CNN、 ELM 优化的深度搜索、ELM 相对测试83 和ELM 最精确的精度数据校程, 和ELVFM 的精度缩缩缩缩校程 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员