Event perception tasks such as recognizing and localizing actions in streaming videos are essential for tackling visual understanding tasks. Progress has primarily been driven by the use of large-scale, annotated training data in a supervised manner. In this work, we tackle the problem of learning \textit{actor-centered} representations through the notion of continual hierarchical predictive learning to localize actions in streaming videos without any training annotations. Inspired by cognitive theories of event perception, we propose a novel, self-supervised framework driven by the notion of hierarchical predictive learning to construct actor-centered features by attention-based contextualization. Extensive experiments on three benchmark datasets show that the approach can learn robust representations for localizing actions using only one epoch of training, i.e., we train the model continually in streaming fashion - one frame at a time, with a single pass through training videos. We show that the proposed approach outperforms unsupervised and weakly supervised baselines while offering competitive performance to fully supervised approaches. Finally, we show that the proposed model can generalize to out-of-domain data without significant loss in performance without any finetuning for both the recognition and localization tasks.


翻译:在这项工作中,我们通过连续的等级预测学习概念,在没有任何培训说明的情况下,将视频流中的行动本地化。在对事件认知理论的启发下,我们提出了一个由分级预测学习概念驱动的新颖、自我监督的框架,以便通过关注背景化来构建以行为体为中心的特征。关于三个基准数据集的广泛实验表明,该方法可以只用一个小节的培训,即我们不断用流时式培训模型,一个框架,一个框架,一个框架,一个通过培训视频传递。我们显示,拟议的方法超越了不统一和监管薄弱的基线,同时为充分监督的方法提供了竞争性的绩效。最后,我们表明,拟议的模型可以概括到外部数据,而不在不给地方性工作带来重大损失的情况下,在不给地方性工作带来任何微调。

0
下载
关闭预览

相关内容

【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员