Extending a classical theorem of Sperner, we investigate the question for which positive integers $m$ there exists a maximal antichain of size $m$ in the Boolean lattice $B_n$, that is, the power set of $[n]:=\{1,2,\dots,n\}$, ordered by inclusion. We characterize all such integers $m$ in the range $\binom{n}{\lceil n/2\rceil}-\lceil n/2\rceil^2\leq m\leq\binom{n}{\lceil n/2\rceil}$. As an important ingredient in the proof, we initiate the study of an extension of the Kruskal-Katona theorem which is of independent interest. For given positive integers $t$ and $k$, we ask which integers $s$ have the property that there exists a family $\mathcal F$ of $k$-sets with $\lvert\mathcal F\rvert=t$ such that the shadow of $\mathcal F$ has size $s$, where the shadow of $\mathcal F$ is the collection of $(k-1)$-sets that are contained in at least one member of $\mathcal F$. We provide a complete answer for the case $t\leq k+1$. Moreover, we prove that the largest integer which is not the shadow size of any family of $k$-sets is $\sqrt 2k^{3/2}+\sqrt[4]{8}k^{5/4}+O(k)$.
翻译:在扩展 Sperner 的古典理论时, 我们调查一个问题, 是否有正整数 $m0 在布林拉提( Boolean lattico) $B_ n$美元, 即 $[$n] 的电源集 :\\\ 1, 2,\ dots, n\ $。 我们用包含来标定所有这类整数 $\ binom{ n29\\\ rcele} - lcil n/2\leq\leq\binom{n\ lcelil nn/2\rcele}$。 作为证据中重要成分, 我们开始研究 Kruskk- korta 的电源集。 对于正整数 $qt$ 和 $k$, 我们问哪个整数是家族的 $lk- setset, $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx