We consider a variant of the $k$-center clustering problem in $\Re^d$, where the centers can be divided into two subsets, one, the red centers of size $p$, and the other, the blue centers of size $q$, where $p+q=k$, and such that each red center and each blue center must be apart a distance of at least some given $\alpha \geq 0$, with the aim of minimizing the covering radius. We provide a bi-criteria approximation algorithm for the problem and a polynomial time algorithm for the constrained problem where all centers must lie on a given line $\ell$.
翻译:我们考虑用$\Re ⁇ d$解决美元中位群集问题的变式,中心可以分为两个子集,一个是规模为$p$的红色中心,另一个是规模为$q$的蓝色中心,其中美元+q=k$,每个红色中心和每个蓝色中心必须至少隔开一定距离,至少给一定距离($\alpha\ ge $0),以便最大限度地减少覆盖半径。我们为问题提供双标准近似算法,并为所有中心必须位于特定线上$\ell$的受限问题提供多元时间算法。