The Weisfeiler-Leman (WL) algorithm is a well-known combinatorial procedure for detecting symmetries in graphs and it is widely used in graph-isomorphism tests. It proceeds by iteratively refining a colouring of vertex tuples. The number of iterations needed to obtain the final output is crucial for the parallelisability of the algorithm. We show that there is a constant k such that every planar graph can be identified (that is, distinguished from every non-isomorphic graph) by the k-dimensional WL algorithm within a logarithmic number of iterations. This generalises a result due to Verbitsky (STACS 2007), who proved the same for 3-connected planar graphs. The number of iterations needed by the k-dimensional WL algorithm to identify a graph corresponds to the quantifier depth of a sentence that defines the graph in the (k+1)-variable fragment C^{k+1} of first-order logic with counting quantifiers. Thus, our result implies that every planar graph is definable with a C^{k+1}-sentence of logarithmic quantifier depth.
翻译:Weisfeiler- Leman (WL) 算法是一个广为人知的组合程序,用于检测图表中的对称性,并且广泛用于图形变形测试。 它通过迭接地精炼一个顶点图质的颜色来进行。 获得最后输出所需的迭代数对于算法的平行性至关重要。 我们显示, 存在一个恒定 k, 每个平面图都可以在对数的迭代数中通过 k- 维维值 WL 算法来识别( 与每个非定点图不同 ) 。 这概括了 Verbitsky (STACS 2007) 的结果, Verbitsky (STACS 2007) 证明了三条相联平面图的颜色相同 。 k- 维度 WL 算法所需的迭代数可以识别一个图形, 与定义第一个测序逻辑( k+1) 中( 可变的碎片 C ⁇ k+1} 中图形的定度深度。 因此, 我们的结果意味着, 每一个平面图都具有CQQQ1 + rentrial- sqrestratriction) 。