We study theta-joins in general and join predicates with conjunctions and disjunctions of inequalities in particular, focusing on ranked enumeration where the answers are returned incrementally in an order dictated by a given ranking function. Our approach achieves strong time and space complexity properties: with $n$ denoting the number of tuples in the database, we guarantee for acyclic full join queries with inequality conditions that for every value of $k$, the $k$ top-ranked answers are returned in $\mathcal{O}(n \operatorname{polylog} n + k \log k)$ time. This is within a polylogarithmic factor of $\mathcal{O}(n + k \log k)$, i.e., the best known complexity for equi-joins, and even of $\mathcal{O}(n+k)$, i.e., the time it takes to look at the input and return $k$ answers in any order. Our guarantees extend to join queries with selections and many types of projections (namely those called "free-connex" queries and those that use bag semantics). Remarkably, they hold even when the number of join results is $n^\ell$ for a join of $\ell$ relations. The key ingredient is a novel $\mathcal{O}(n \operatorname{polylog} n)$-size factorized representation of the query output, which is constructed on-the-fly for a given query and database. In addition to providing the first non-trivial theoretical guarantees beyond equi-joins, we show in an experimental study that our ranked-enumeration approach is also memory-efficient and fast in practice, beating the running time of state-of-the-art database systems by orders of magnitude.
翻译:我们一般地研究Ta-joins, 并结合上游值, 特别是联系和分解不平等, 重点是按给定排序函数的顺序递解答案的排名计数。 我们的方法具有强大的时间和空间复杂性。 我们的方法实现了强大的时间和空间复杂性 : 美元在数据库中分解 Tuples 的数量, 我们保证循环式的完整查询与不平等条件结合, 每一个值为 $kcal{O}, 最高值的答案在 $\ mathcal{O} (n\tritorname{poly} n+K$) 的时间里返回 。 我们的保证会将查询与 $\ mathcal{O} (n + k\logle k) 的多数性因子因数相联 。 equitial- liveral- retailateal mail is a maxal- decrideal mailal- max the max the licial- deal listrateal- listrateal- listal- listal- listal- listrations max thes is maxn max thes max maxn max max max max max max max maxssss max maxsssssssss maxss maxsssssssssssssssssssss 最n 和n 最( 最已知的自动和自动、n) 自动和自动和自动和自动和自动自动自动自动自动自动自动自动自动和自动和自动和自动自动自动自动和自动和自动和自动和自动自动自动自动和自动和自动和自动自动自动自动自动自动自动自动自动自动自动自动自动和自动和自动和自动驱动算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算