The $k$-Opt heuristic is a simple improvement heuristic for the Traveling Salesman Problem. It starts with an arbitrary tour and then repeatedly replaces $k$ edges of the tour by $k$ other edges, as long as this yields a shorter tour. We will prove that for 2-dimensional Euclidean Traveling Salesman Problems with $n$ cities the approximation ratio of the $k$-Opt heuristic is $\Theta(\log n / \log \log n)$. This improves the upper bound of $O(\log n)$ given by Chandra, Karloff, and Tovey in 1999 and provides for the first time a non-trivial lower bound for the case $k\ge 3$. Our results not only hold for the Euclidean norm but extend to arbitrary $p$-norms.
翻译:$k$- Opt Heuristic is a simply premotion of the Travel salesman problem. 它从任意的巡回旅游开始,然后反复用$k$来取代巡回旅游的边缘,只要这能带来较短的巡回旅游。 我们将证明,对于二维的欧洲- Opt Heuristic 问题,$k$- Opt Heuristic 的近似比率是$@theta(log n /\log\log n). 这改善了Chandra、Karloff和Tovey在1999年提供的$O(log n) 美元上限, 并且首次为案件提供了非三美元的非三角下限。 我们的结果不仅维持了欧洲标准,而且延伸到了任意的$p-norms 。