The partial representation extension problem generalizes the recognition problem for classes of graphs defined in terms of vertex representations. We exhibit circular-arc graphs as the first example of a graph class where the recognition is polynomially solvable while the representation extension problem is NP-complete. In this setting, several arcs are predrawn and we ask whether this partial representation can be completed. We complement this hardness argument with tractability results of the representation extension problem on various subclasses of circular-arc graphs, most notably on all variants of Helly circular-arc graphs. In particular, we give linear-time algorithms for extending normal proper Helly and proper Helly representations. For normal Helly circular-arc representations we give an $O(n^3)$-time algorithm. Surprisingly, for Helly representations, the complexity hinges on the seemingly irrelevant detail of whether the predrawn arcs have distinct or non-distinct endpoints: In the former case the previous algorithm can be extended, whereas the latter case turns out to be NP-complete. We also prove that representation extension problem of unit circular-arc graphs is NP-complete.


翻译:部分代表扩展问题 部分代表扩展问题 概括了以顶点表示方式定义的图表类别的识别问题 。 我们展示循环弧图作为图表类别的第一个示例, 其识别方式是多角度的可溶性, 而代表扩展问题是完整的 。 在这种背景下, 有几个弧是预草的, 我们问这个部分代表方式能否完成 。 我们用循环弧图各小类中代表扩展问题的可移植性结果来补充这种硬性论点, 最突出的是 Helly 圆弧图的所有变量 。 特别是, 我们给出线性时间算法, 用于扩展正常的正常的 Helly 和适当的 Helly 表达方式 。 对于普通的 Hellly 循环弧- 表达方式, 我们给出了一个$( n) 3 美元- 时间算法 。 令人惊讶的是, 复杂程度取决于预先弧弧是否具有独特或非模糊的终点的表面细节 : 在前一种情况下, 以前的算法可以扩展, 而后一种情况则转换为 NP- 完整 。 我们还证明圆形图的扩展 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
1+阅读 · 2021年10月20日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
9+阅读 · 2021年10月1日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员