Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems. Identifying vessels that evade monitoring systems -- known as "dark vessels" -- is key to managing and securing the health of marine environments. With the rise of satellite-based synthetic aperture radar (SAR) imaging and modern machine learning (ML), it is now possible to automate detection of dark vessels day or night, under all-weather conditions. SAR images, however, require domain-specific treatment and is not widely accessible to the ML community. Moreover, the objects (vessels) are small and sparse, challenging traditional computer vision approaches. We present the largest labeled dataset for training ML models to detect and characterize vessels from SAR. xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission that are, on average, 29,400-by-24,400 pixels each. The images are annotated using a combination of automated and manual analysis. Co-located bathymetry and wind state rasters accompany every SAR image. We provide an overview of the results from the xView3 Computer Vision Challenge, an international competition using xView3-SAR for ship detection and characterization at large scale. We release the data (https://iuu.xview.us/) and code (https://github.com/DIUx-xView) to support ongoing development and evaluation of ML approaches for this important application.
翻译:世界各地的不可持续捕捞做法对海洋资源和生态系统构成重大威胁。识别逃避监测系统 -- -- 称为“达克船只” -- -- 的船舶是管理和确保海洋环境健康的关键。随着卫星合成孔径雷达成像和现代机器学习(ML)的兴起,现在有可能在全天候条件下每天或夜间对暗船进行自动检测;但是,SAR图像需要按特定领域进行处理,并且不能为ML社区广泛获得。此外,物体(船只)是小型和稀疏的,具有挑战性的传统计算机视觉方法。我们提供了最大的标签数据集,用于培训ML模型,以探测和鉴定来自SAR的船舶。xVA3-SAR包括来自SAR-1飞行任务的近1 000个具有分析准备状态的合成孔径雷达图像,每个飞行任务平均有29,400比24,400平方像素。图像通过自动化和手工综合分析加以附加说明。每个SAR图像合用测深和风状态的图像附在每张SAR图像中。我们概述了XVI3计算机视觉挑战的结果,这是利用xVA/SAR系统进行国际竞争,使用xVI/VI进行船舶探测和大规模数据分析。