The primary objective of Stochastic Frontier (SF) Analysis is the deconvolution of the estimated composed error terms into noise and inefficiency. Assuming a parametric production function (e.g. Cobb-Douglas, Translog, etc.), might lead to false inefficiency estimates. To overcome this limiting assumption, the production function can be modelled utilizing P-splines. Application of this powerful and flexible tool enables modelling of a wide range of production functions. Additionally, one can allow the parameters of the composed error distribution to depend on covariates in a functional form. The SF model can then be cast into the framework of a Generalized Additive Model for Location, Scale and Shape (GAMLSS). Furthermore, a decision-making unit (DMU) typically produces multiple outputs. It does this by operating several sub-DMUs, which each employ a production process to produce a single output. Therefore, the production processes of the sub-DMUs are typically not independent. Consequently, the inefficiencies may be expected to be dependent, too. In this paper, the Distributional Stochastic Frontier Model (DSFM) is introduced. The multivariate distribution of the composed error term is modeled using a copula. As a result, the presented model is a generalization of the model for seemingly unrelated stochastic frontier regressions by Lai and Huang (2013).
翻译:斯托卡特边疆分析(SF)的首要目标是将估计构成错误的术语转换成噪音和低效率,假设一个参数性生产功能(如Cobb-Douglas、Translog等),可能会导致低效率估计值。为了克服这一限制性假设,生产功能可以采用P-splines模型化。应用这一强大而灵活的工具可以模拟一系列广泛的生产功能。此外,人们可以允许组成错误分布的参数取决于功能形式的共变体。然后,SF模式可以被抛入一个位置、规模和形状通用Additive模型(GAMLSS)的框架。此外,一个决策单位(DMU)通常会产生多种产出。它这样做的方法是运行几个子DMUs,每个子都使用一个生产过程来生成单一产出。因此,子DMUs的生产过程通常不独立。因此,效率可能取决于一种功能性的形式。因此,在本文中,可将SFFM模式(DSFMF)纳入一个通用Additive模型(DDSFM)的框架框架框架框架框架框架框架框架框架框架框架。此外,采用一个套套式的多变式,用纸型号模型,用平式的Rillaldaldaldaldalalisildalislaldaldaldaldalmalmal 。