In this paper, we present two new concepts related to subgraph counting where the focus is not on the number of subgraphs that are isomorphic to some fixed graph $H$, but on the frequency with which a vertex or an edge belongs to such subgraphs. In particular, we are interested in the case where $H$ is a complete graph. These new concepts are termed vertex participation and edge participation respectively. We combine these concepts with that of the rich-club to identify what we call a Super rich-club and rich edge-club. We show that the concept of vertex participation is a generalisation of the rich-club. We present experimental results on randomised Erd\"{o}s R\'{e}nyi and Watts-Strogatz small-world networks. We further demonstrate both concepts on a complex brain network and compare our results to the rich-club of the brain.
翻译:在本文中,我们提出了两个与子线计数有关的新概念, 其焦点不是某个固定的图形$H, 而是一个顶端或边缘属于这些子线的频率。 特别是, 我们感兴趣的是美元是一个完整的图表。 这些新概念分别被称为顶端参与和边缘参与。 我们把这些概念与富人俱乐部的概念结合起来, 以确定我们称之为超级富人俱乐部和富人边缘俱乐部的概念。 我们显示, 顶端参与的概念是丰富俱乐部的概括性概念。 我们在随机的Erd\\ { { o}\\\\\\ { { { { {e}nyi 和 Watts- Strogat- small-worldworld 网络上提出实验结果。 我们进一步展示了复杂的大脑网络上的两个概念, 并将我们的结果与大脑富人俱乐部进行比较 。