We present a novel privacy preservation strategy for decentralized visualization. The key idea is to imitate the flowchart of the federated learning framework, and reformulate the visualization process within a federated infrastructure. The federation of visualization is fulfilled by leveraging a shared global module that composes the encrypted externalizations of transformed visual features of data pieces in local modules. We design two implementations of federated visualization: a prediction-based scheme, and a query-based scheme. We demonstrate the effectiveness of our approach with a set of visual forms, and verify its robustness with evaluations. We report the value of federated visualization in real scenarios with an expert review.
翻译:我们为分散的可视化提出了一个新的隐私保护战略。关键的想法是模仿联合学习框架的流程图,并在联合基础设施中重新构建可视化进程。通过利用一个共同的全球模块来实现可视化联合会,该模块构成当地模块中数据元件变形视觉特征的加密外化。我们设计了两个实施联邦可视化的方法:一种基于预测的计划,一种基于查询的计划。我们用一套可视形式来展示我们的方法的有效性,并验证其与评估的稳健性。我们用专家审查来报告真实情景中结合可视化的价值。