The study of rare events in molecular and atomic systems such as conformal changes and cluster rearrangements has been one of the most important research themes in chemical physics. Key challenges are associated with long waiting times rendering molecular simulations inefficient, high dimensionality impeding the use of PDE-based approaches, and the complexity or breadth of transition processes limiting the predictive power of asymptotic methods. Diffusion maps are promising algorithms to avoid or mitigate all these issues. We adapt the diffusion map with Mahalanobis kernel proposed by Singer and Coifman (2008) for the SDE describing molecular dynamics in collective variables in which the diffusion matrix is position-dependent and, unlike the case considered by Singer and Coifman, is not associated with a diffeomorphism. We offer an elementary proof showing that one can approximate the generator for this SDE discretized to a point cloud via the Mahalanobis diffusion map. We use it to calculate the committor functions in collective variables for two benchmark systems: alanine dipeptide, and Lennard-Jones-7 in 2D. For validating our committor results, we compare our committor functions to the finite-difference solution or by conducting a "committor analysis" as used by molecular dynamics practitioners. We contrast the outputs of the Mahalanobis diffusion map with those of the standard diffusion map with isotropic kernel and show that the former gives significantly more accurate estimates for the committors than the latter.


翻译:分子和原子系统中的稀有事件研究,如相近变化和集群重新排列,一直是化学物理中最重要的研究主题之一。关键挑战与漫长的等待时间相关,因为分子模拟效率低,高维阻碍使用基于PDE的方法,以及转型过程的复杂性或广度限制了无药可救方法的预测力。扩散图是避免或减轻所有这些问题的有希望的算法。我们用Singer和Coifman(2008年)提出的马哈拉诺比斯内核的分布图来调整SDE的分布图,描述在集体变量中的分子动态,在这些变量中,扩散矩阵取决于位置,而不像Singer和Coifman所考虑的案例中,分子模拟过程效率高,阻碍使用PDF-DE法的方法,以及转型过程的复杂或宽度,我们提供了一个基本证据,表明SDE的生成者可以通过Mahalanobism映射图接近点云。我们用它来计算两种基准系统中的集体变量中的承诺函数:alanine diptide,和Lennard-Jones-7D,其中的分子7D。为了确认我们之前的模型的流流流化结果,我们用前的流流流化分析,我们用前的流流流流流的流的流分析是用来进行较前的流分析,我们使用的流化的流化的流结果,我们用来进行较前的流的流的流的流的流的流的流的流的流的流结果的流的流的流的流的流。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员