Inverse rendering seeks to estimate scene characteristics from a set of data images. The dominant approach is based on differential rendering using Monte-Carlo. Algorithms as such usually rely on a forward model and use an iterative gradient method that requires sampling millions of light paths per iteration. This paper presents an efficient framework that speeds up existing inverse rendering algorithms. This is achieved by tailoring the iterative process of inverse rendering specifically to a GPU architecture. For this cause, we introduce two interleaved steps - Path Sorting and Path Recycling. Path Sorting allows the GPU to deal with light paths of the same size. Path Recycling allows the algorithm to use light paths from previous iterations to better utilize the information they encode. Together, these steps significantly speed up gradient optimization. In this paper, we give the theoretical background for Path Recycling. We demonstrate its efficiency for volumetric scattering tomography and reflectometry (surface reflections).
翻译:从一组数据图像中估计场景特征。 支配性方法基于使用 Monte- Carlo 的差别分析。 演算法本身通常依赖于前方模型, 并使用迭代梯度方法, 需要按迭代取样数以百万计的光路。 本文提供了一个高效的框架, 加速了现有的反向演算法。 这是通过调整迭代进程, 具体地将反向转换到一个 GPU 结构来实现的。 为此, 我们引入了两步 - 路径排序和路径回收。 路径排序允许 GPU 处理相同大小的光路 。 路径回收法允许算法使用前迭代的光路来更好地利用它们编码的信息。 这些步骤加在一起, 大大加快了梯度优化 。 在本文中, 我们给出了路径回收的理论背景。 我们展示了它用于体积散射成像和反射法( 地面反射) 的效率 。