Graph analysis involves a high number of random memory access patterns. Earlier research has shownthat the cache miss latency is responsible for more than half of the graph processing time, with the CPU execution having the smaller share. There has been significant study on decreasing the CPU computing time for example, by employing better cache prefetching and replacement policies. In thispaper, we study the various methods that do so by attempting to decrease the CPU cache miss ratio.Graph Reordering attempts to exploit the power-law distribution of graphs- few sparsely-populated vertices in the graph have high number of connections- to keep the frequently accessed vertices together locally and hence decrease the cache misses. However, reordering the graph by keeping the hot vertices together may affect the spatial locality of the graph, and thus add to the total CPU compute time.Also, we also need to have a control over the total reordering time and its inverse relation with thefinal CPU execution timeIn order to exploit this trade-off between reordering as per vertex hotness and spatial locality, we introduce the light-weight Community-based Reordering. We attempt to maintain the community-structureof the graph by storing the hot-members in the community locally together. The implementation also takes into consideration the impact of graph diameter on the execution time. We compare our implementation with other reordering implementations and find a significantly better result on five graph processing algorithms- BFS, CC, CCSV, PR and BC. Lorder achieved speed-up of upto 7x and an average speed-up of 1.2x as compared to other reordering algorithms
翻译:图片分析包含大量随机存储存取模式。 早期研究显示, 缓存误留错位是图处理时间一半以上的一半以上的原因, CPU 执行的比例较小。 例如, 已经对降低 CPU 计算时间进行了大量研究, 例如, 采用更好的缓存预拉和替换政策 。 在本文件中, 我们通过尝试降低 CPU 缓存误差比例来研究各种方法。 格子重新排序尝试利用图形的电源法分布- 很少人流的垂直值, 使经常访问的螺旋连接到本地, 从而减少缓存误差。 然而, 通过保持热的悬浮来重新排序图形计算时间, 可能会影响图的空间位置, 从而增加总 CPU 缓存误存误差比率 。 因此, 我们还需要控制总调整时间及其与最终 CPU 执行时间的反比值 。 图表中, 要利用这一贸易交易量, 将经常访问的峰热点点和空间断点连接起来, 从而减少缓存误差。 然而, 我们引入了 社区 递增 共同体 递增 递增 递增 递增 共同体 度 递增 度 递增 度 递增 递增 度 递增 递增 递增 递增 递增 递增 递增 递增 递增 递增 共同体 递增 度 递增 递增 递增 递增 递增 递增 递增 递增 递增 递 递 递增 度 递增 度 递增 递增 度 递增 递增 度 度 度 度 度 度 度 度 度 度 递增 度 度 度 度 度 递增 度 度 递 递 递 递 递 递 度 度 递 递 递 递 递增 度 度 度 度 度 递增 递增 递增 度 度 递增 递增 度 度 度 递增 度 递增 递增 递增 递增 递增 递增 递增 度 递增 递增 递增 递增