Survival analysis appears in various fields such as medicine, economics, engineering, and business. Recent studies showed that the Ordinary Differential Equation (ODE) modeling framework unifies many existing survival models while the framework is flexible and widely applicable. However, naively applying the ODE framework to survival analysis problems may model fiercely changing density function which may worsen the model's performance. Though we can apply L1 or L2 regularizers to the ODE model, their effect on the ODE modeling framework is barely known. In this paper, we propose hazard gradient penalty (HGP) to enhance the performance of a survival analysis model. Our method imposes constraints on local data points by regularizing the gradient of hazard function with respect to the data point. Our method applies to any survival analysis model including the ODE modeling framework and is easy to implement. We theoretically show that our method is related to minimizing the KL divergence between the density function at a data point and that of the neighborhood points. Experimental results on three public benchmarks show that our approach outperforms other regularization methods.
翻译:在医学、经济学、工程学和工商等不同领域出现了生存分析。最近的研究显示,普通差异计算(ODE)模型框架在框架灵活和广泛适用的情况下统一了许多现有的生存模型。然而,天真地将ODE框架用于生存分析问题,可能会模拟急剧变化的密度功能,从而可能使模型的性能恶化。虽然我们可以将L1或L2正规化者应用于ODE模型,但它们对ODE模型框架的影响却鲜为人知。在本文中,我们提出危险梯度处罚(HGP),以提高生存分析模型的性能。我们的方法通过调整数据点的危险函数梯度,对本地数据点施加限制。我们的方法适用于包括ODE模型框架在内的任何生存分析模型,而且易于执行。我们理论上表明,我们的方法与最大限度地缩小数据点密度函数与邻里点的密度函数之间的 KL差异有关。我们三个公共基准的实验结果显示,我们的方法比其他规范方法要优于其他方法。