Minimum Weight Cycle (MWC) is the problem of finding a simple cycle of minimum weight in a graph $G=(V,E)$. This is a fundamental graph problem with classical sequential algorithms that run in $\tilde{O}(n^3)$ and $\tilde{O}(mn)$ time where $n=|V|$ and $m=|E|$. In recent years this problem has received significant attention in the context of fine-grained sequential complexity as well as in the design of faster sequential approximation algorithms, though not much is known in the distributed CONGEST model. We present sublinear-round approximation algorithms for computing MWC in directed graphs, and weighted graphs. Our algorithms use a variety of techniques in non-trivial ways, such as in our approximate directed unweighted MWC algorithm that efficiently computes BFS from all vertices restricted to certain implicitly computed neighborhoods in sublinear rounds, and in our weighted approximation algorithms that use unweighted MWC algorithms on scaled graphs combined with a fast and streamlined method for computing multiple source approximate SSSP. We present $\tilde{\Omega}(\sqrt{n})$ lower bounds for arbitrary constant factor approximation of MWC in directed graphs and undirected weighted graphs.
翻译:暂无翻译