Identifiability, and the closely related idea of partial smoothness, unify classical active set methods and more general notions of solution structure. Diverse optimization algorithms generate iterates in discrete time that are eventually confined to identifiable sets. We present two fresh perspectives on identifiability. The first distills the notion to a simple metric property, applicable not just in Euclidean settings but to optimization over manifolds and beyond; the second reveals analogous continuous-time behavior for subgradient descent curves. The Kurdya-Lojasiewicz property typically governs convergence in both discrete and continuous time: we explore its interplay with identifiability.
翻译:辨别性, 以及与部分顺畅性密切相关的概念, 统一经典主动设定的方法和较一般的解决方案结构概念。 多样化优化算法在离散的时间里产生迭代, 最终局限于可识别性组。 我们提出了两个关于可识别性的新视角 。 第一个将概念提炼为简单的公有属性, 不仅适用于欧几里得环境, 也适用于对多个区域及以外区域进行优化; 第二个显示亚梯位下位下层曲线的类似连续时间行为 。 Kurdya- Lojasiewicz 属性通常在离散时间和连续时间里都对趋同性进行调节: 我们探索它与可识别性的互动 。