In the Multi-Agent Path Finding (MAPF) problem, a set of agents moving on a graph must reach their own respective destinations without inter-agent collisions. In practical MAPF applications such as navigation in automated warehouses, where occasionally there are hundreds or more agents, MAPF must be solved iteratively online on a lifelong basis. Such scenarios rule out simple adaptations of offline compute-intensive optimal approaches; and scalable sub-optimal algorithms are hence appealing for such settings. Ideal algorithms are scalable, applicable to iterative scenarios, and output plausible solutions in predictable computation time. For the aforementioned purpose, this study presents Priority Inheritance with Backtracking (PIBT), a novel sub-optimal algorithm to solve MAPF iteratively. PIBT relies on an adaptive prioritization scheme to focus on the adjacent movements of multiple agents; hence it can be applied to several domains. We prove that, regardless of their number, all agents are guaranteed to reach their destination within finite time when the environment is a graph such that all pairs of adjacent nodes belong to a simple cycle (e.g., biconnected). Experimental results covering various scenarios, including a demonstration with real robots, reveal the benefits of the proposed method. Even with hundreds of agents, PIBT yields acceptable solutions almost immediately and can solve large instances that other established MAPF methods cannot. In addition, PIBT outperforms an existing approach on an iterative scenario of conveying packages in an automated warehouse in both runtime and solution quality.


翻译:在多机构路径查找(MAPF)问题中,一组在图表上移动的代理商必须达到各自的目的地,而不会发生试剂碰撞。在自动仓库导航(有时有数百个或更多的代理商)等自动仓库导航(PIBT)应用中,MAPF必须终生地在网上迭接解决。这种情景排除了对离线计算密集的离线计算最佳方法的简单调整;以及可缩放的亚最佳算法因此对此类设置具有吸引力。理想算法是可缩放的,适用于迭代假设,并在可预测的计算时间里输出貌似可行的解决方案。为了上述目的,本研究展示了“优先继承质量与回溯跟踪(PIBT)”应用,这是一个创新的次最佳算法,以迭接方式解决MAPFP问题。 PIBT 依赖一个适应性优先排序方案,因此可以应用于多个领域。我们证明,不管其数量多少,所有代理商都保证在一定的时间内到达目的地,当环境是一个图表时,所有相邻的对齐点的组合都属于一个简单的循环(e,例如,双连接的自动跟踪)质量的自动追踪(PIBFPIFS),这是一个创新的快速解算算法,一个新的计算方法,可以立即展示一个包含一个大型的模型中一个大型的模型的模型,可以显示一个大型的模型,一个大型的模型的模型的模型的模型的模型,可以立即显示一个大型的模型。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员