Federated learning (FL) trains a machine learning model on mobile devices in a distributed manner using each device's private data and computing resources. A critical issues is to evaluate individual users' contributions so that (1) users' effort in model training can be compensated with proper incentives and (2) malicious and low-quality users can be detected and removed. The state-of-the-art solutions require a representative test dataset for the evaluation purpose, but such a dataset is often unavailable and hard to synthesize. In this paper, we propose a method called Pairwise Correlated Agreement (PCA) based on the idea of peer prediction to evaluate user contribution in FL without a test dataset. PCA achieves this using the statistical correlation of the model parameters uploaded by users. We then apply PCA to designing (1) a new federated learning algorithm called Fed-PCA, and (2) a new incentive mechanism that guarantees truthfulness. We evaluate the performance of PCA and Fed-PCA using the MNIST dataset and a large industrial product recommendation dataset. The results demonstrate that our Fed-PCA outperforms the canonical FedAvg algorithm and other baseline methods in accuracy, and at the same time, PCA effectively incentivizes users to behave truthfully.
翻译:联邦学习联合会(FL)利用每个装置的私人数据和计算资源,以分布式方式培训移动装置的机器学习模式。一个关键问题是评价个别用户的贡献,以便(1) 用户在示范培训方面的努力能够得到适当的奖励,(2) 能够检测和删除恶意和低质量的用户。最先进的解决方案要求为评价目的建立一个具有代表性的测试数据集,但这种数据集往往无法获得,也难以合成。在本文件中,我们根据同侪预测来评价FL用户的贡献而没有测试数据集,提出了一个称为Pairwith Corcontal协议(PCA)的方法。CCA利用用户上传的示范参数的统计相关性来实现这一目标。我们然后应用CPA来设计:(1) 一种称为FD-PCA的新的联邦化学习算法,(2) 一种保证真实性的新激励机制。我们利用MNIST数据集和大型工业产品建议数据集来评估CCA和FD-PCA的性能。结果表明,我们的FDAVA算法和其他基线方法在准确性和时间上有效化。