Conformal prediction is a statistical tool for producing prediction regions of machine learning models that are valid with high probability. However, applying conformal prediction to time series data leads to conservative prediction regions. In fact, to obtain prediction regions over $T$ time steps with confidence $1-\delta$, {previous works require that each individual prediction region is valid} with confidence $1-\delta/T$. We propose an optimization-based method for reducing this conservatism to enable long horizon planning and verification when using learning-enabled time series predictors. Instead of considering prediction errors individually at each time step, we consider a parameterized prediction error over multiple time steps. By optimizing the parameters over an additional dataset, we find prediction regions that are not conservative. We show that this problem can be cast as a mixed integer linear complementarity program (MILCP), which we then relax into a linear complementarity program (LCP). Additionally, we prove that the relaxed LP has the same optimal cost as the original MILCP. Finally, we demonstrate the efficacy of our method on a case study using pedestrian trajectory predictors.
翻译:合规预测是一种用于生成机器学习模型有效预测区间的统计工具。然而,将合规预测应用于时间序列数据会导致保守的预测区间。事实上,为了在置信度$1-\delta$下获得$T$个时间步长的预测区间,{以前的工作要求每个单独的预测区间}在置信度$1-\delta/T$下是有效的。我们提出了一种基于优化的方法来减少这种保守性,以便在使用学习增强型时间序列预测器时进行长期规划和验证。我们不是在每个时间步骤单独考虑预测误差,而是考虑在多个时间步骤上的参数化预测误差。通过在另一个数据集上优化参数,我们找到了不保守的预测区间。我们证明了这个问题可以被转化为混合整数线性互补程序(MILCP),然后将其松弛为线性互补程序(LCP)。此外,我们证明了松弛LP具有与原始MILCP相同的最优成本。最后,我们在步行者轨迹预测器的案例研究中展示了我们方法的成效。