Weighting estimators based on propensity scores are widely used for causal estimation in a variety of contexts, such as observational studies, marginal structural models and interference. They enjoy appealing theoretical properties such as consistency and possible efficiency under correct model specification. However, this theoretical appeal may be diminished in practice by sensitivity to misspecification of the propensity score model. To improve on this, we borrow an idea from an alternative approach to causal effect estimation in observational studies, namely subclassification estimators. It is well known that compared to weighting estimators, subclassification methods are usually more robust to model misspecification. In this paper, we first discuss an intrinsic connection between the seemingly unrelated weighting and subclassification estimators, and then use this connection to construct robust propensity score weights via subclassification. We illustrate this idea by proposing so-called full-classification weights and accompanying estimators for causal effect estimation in observational studies. Our novel estimators are both consistent and robust to model misspecification, thereby combining the strengths of traditional weighting and subclassification estimators for causal effect estimation from observational studies. Numerical studies show that the proposed estimators perform favorably compared to existing methods.


翻译:基于偏差分数的估计估计值被广泛用于各种情况下的因果关系估计,例如观察研究、边缘结构模型和干扰等。它们享有正确的模型规格下的一致性和可能的效率等有吸引力的理论属性,但是,这种理论吸引力在实践中可能因偏差性分数模型的敏感性而减少。为了改进这一点,我们借用了一种在观察研究中进行因果关系估计的替代方法的想法,即亚分类估计值。众所周知,与估计值加权相比,分级方法通常更有力,可以模拟误差。在本文中,我们首先讨论似乎无关的加权和次分类估计值之间的内在联系,然后利用这种联系通过分级分类建立稳健的偏差分分数。我们通过在观察研究中提出所谓的全面分类权重和附带的因果关系估计值来说明这一想法。我们的新估计值与估计值相比,对于模型的误差通常比较一致和有力,从而将传统的加权和次分类估计值的精度标数结合起来。我们首先讨论似乎不相干的加权和次分类估计值之间的内在联系,然后利用这种联系,然后通过分级估计法来建立强有力的偏差性研究,以显示现有的估计结果的比较性估计结果。我们通过现有的估计法,以显示现有的估计结果的偏差的估算结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
178+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
0+阅读 · 2021年11月25日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员