This paper introduces yet another stochastic model replicating chain ladder estimates and furthermore considers extensions that add flexibility to the modeling. We show that there is a one-to-one correspondence between chain-ladder's individual development factors and averaged hazard rates in reversed development time. By exploiting this relationship, we introduce a new model that is able to replicate chain ladder's development factors. The replicating model is a GLM model with averaged hazard rates as response. This is in contrast to the existing reserving literature within the GLM framework where claim amounts are modeled as response. Modeling the averaged hazard rate corresponds to modeling the claim development and is arguably closer to the actual chain ladder algorithm. Furthermore, the resulting model only has half the number of parameters compared to when modeling the claim amounts; because exposure is not modeled. The lesser complexity can be used to easily introduce model extensions that may better fit the data. We provide a new R-package, $\texttt{clmplus}$, where the models are implemented and can be fed with run-off triangles. We conduct an empirical study on 30 publicly available run-off triangles making a case for the benefit of having $\texttt{clmplus}$ in the actuary's toolbox.
翻译:本文还介绍了另一个复制链梯估计的随机模型, 并且进一步考虑了能增加模型灵活性的扩展。 我们显示链梯个体发展因素和平均危险率在逆向发展时间中存在一对一的对应关系。 通过利用这种关系, 我们引入了一个新的模型, 能够复制链梯发展因素。 复制模型是一种GLM模型, 平均危险率作为响应。 这与GLM框架内现有的保留文献形成对照, 将索赔金额作为响应模型。 模拟平均危险率与索赔开发的模型相对应, 并且可以说更接近实际链梯子算法。 此外, 由此形成的模型只有参数数量的一半, 与模拟索赔数额时相比; 因为曝光量没有模型。 较轻的复杂程度可以很容易地引入模型扩展, 更适合数据。 我们提供了一个新的R组合, $\ textt{ cmplplus} $, 模型是用来执行的, 并且可以与运行的三角体相匹配。 我们在30个公开的基数工具框中进行实验性研究。