In this paper, we propose a novel Discrete Cosine Transform (DCT)-based neural network layer which we call DCT-perceptron to replace the $3\times3$ Conv2D layers in the Residual neural Network (ResNet). Convolutional filtering operations are performed in the DCT domain using element-wise multiplications by taking advantage of the Fourier and DCT Convolution theorems. A trainable soft-thresholding layer is used as the nonlinearity in the DCT perceptron. Compared to ResNet's Conv2D layer which is spatial-agnostic and channel-specific, the proposed layer is location-specific and channel-specific. The DCT-perceptron layer reduces the number of parameters and multiplications significantly while maintaining comparable accuracy results of regular ResNets in CIFAR-10 and ImageNet-1K. Moreover, the DCT-perceptron layer can be inserted with a batch normalization layer before the global average pooling layer in the conventional ResNets as an additional layer to improve classification accuracy.


翻译:在本文中,我们提出一个新的基于 DCT 的神经网络图层,我们称之为DCT-受体,以取代残余神经网络(ResNet)中的3\times3$Conv2D层。在DCT 领域,利用Fourier 和 DCT 变异理论体进行进化,在DCT 领域进行进化过滤操作,同时利用Freier 和 DCT 变异理论体进行元素性倍增。在DCT 受体中,一个可训练的软管层被用作非线性。与ResNet 的Conv2D 层相比,该层是空间-敏感和频道专用的,拟议的层是特定地点和频道的。DCT 受体层大大减少参数和倍增量,同时保持CIFAR-10 和图像Net-1K 常规ResNet 常规ResNet 的常规ResNet ResNet 的相近精度结果。此外,DCT 受控层可以在常规ResNet 全球平均集合层之前与分级平层相融合层一起插入,作为提高分类准确性的额外层。

2
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员