In this paper, we propose a novel Discrete Cosine Transform (DCT)-based neural network layer which we call DCT-perceptron to replace the $3\times3$ Conv2D layers in the Residual neural Network (ResNet). Convolutional filtering operations are performed in the DCT domain using element-wise multiplications by taking advantage of the Fourier and DCT Convolution theorems. A trainable soft-thresholding layer is used as the nonlinearity in the DCT perceptron. Compared to ResNet's Conv2D layer which is spatial-agnostic and channel-specific, the proposed layer is location-specific and channel-specific. The DCT-perceptron layer reduces the number of parameters and multiplications significantly while maintaining comparable accuracy results of regular ResNets in CIFAR-10 and ImageNet-1K. Moreover, the DCT-perceptron layer can be inserted with a batch normalization layer before the global average pooling layer in the conventional ResNets as an additional layer to improve classification accuracy.
翻译:在本文中,我们提出一个新的基于 DCT 的神经网络图层,我们称之为DCT-受体,以取代残余神经网络(ResNet)中的3\times3$Conv2D层。在DCT 领域,利用Fourier 和 DCT 变异理论体进行进化,在DCT 领域进行进化过滤操作,同时利用Freier 和 DCT 变异理论体进行元素性倍增。在DCT 受体中,一个可训练的软管层被用作非线性。与ResNet 的Conv2D 层相比,该层是空间-敏感和频道专用的,拟议的层是特定地点和频道的。DCT 受体层大大减少参数和倍增量,同时保持CIFAR-10 和图像Net-1K 常规ResNet 常规ResNet 的常规ResNet ResNet 的相近精度结果。此外,DCT 受控层可以在常规ResNet 全球平均集合层之前与分级平层相融合层一起插入,作为提高分类准确性的额外层。