Automated vascular segmentation on optical coherence tomography angiography (OCTA) is important for the quantitative analyses of retinal microvasculature in neuroretinal and systemic diseases. Despite recent improvements, artifacts continue to pose challenges in segmentation. Our study focused on removing the speckle noise artifact from OCTA images when performing segmentation. Speckle noise is common in OCTA and is particularly prominent over large non-perfusion areas. It may interfere with the proper assessment of retinal vasculature. In this study, we proposed a novel Supervision Vessel Segmentation network (SVS-net) to detect vessels of different sizes. The SVS-net includes a new attention-based module to describe vessel positions and facilitate the understanding of the network learning process. The model is efficient and explainable and could be utilized to reduce the need for manual labeling. Our SVS-net had better performance in accuracy, recall, F1 score, and Kappa score when compared to other well recognized models.
翻译:对神经和系统疾病视网膜微血管的定量分析而言,对神经和系统疾病视网膜微血管的自动血管断裂十分重要。尽管最近有所改进,但文物仍然在分解方面构成挑战。我们的研究重点是在进行分解时从OCTA图像中去除闪烁的噪音制品。在OCTA中,闪烁噪音很常见,在大面积非渗入区特别突出。这可能干扰对视网膜血管的正确评估。我们在这次研究中提议建立一个新的监督船分解网(SVS-net),以探测不同尺寸的船只。SVS-net包括一个新的关注模块,以描述船只的位置,便利对网络学习过程的了解。该模型是高效和可解释的,可以用来减少手工贴标签的需要。我们的SVS-net与其他公认的模型相比,在准确性、回顾、F1分和Kappa分数方面表现更好。