We present a method for providing statistical guarantees on runtime safety and goal reachability for integrated planning and control of a class of systems with unknown nonlinear stochastic underactuated dynamics. Specifically, given a dynamics dataset, our method jointly learns a mean dynamics model, a spatially-varying disturbance bound that captures the effect of noise and model mismatch, and a feedback controller based on contraction theory that stabilizes the learned dynamics. We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound. We employ techniques from Extreme Value Theory (EVT) to estimate, to a specified level of confidence, several constants which characterize the learned components and govern the size of the tracking error bound. This ensures plans are guaranteed to be safely tracked at runtime. We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot, whereas baselines that ignore the model error and stochasticity are unsafe.
翻译:我们提出了一个方法,为运行时间安全和目标可达性提供统计保障,用于综合规划和控制一类系统,这些系统具有未知的非线性随机活性不足动态。具体地说,根据动态数据集,我们的方法共同学习了一个中值动态模型,一个空间变化干扰约束,捕捉噪音和模型不匹配的影响,一个基于收缩理论的反馈控制器,以稳定所学动态。我们提议了一个基于取样的规划器,使用平均动态模型,同时通过一个已学的扰动约束将闭环跟踪错误捆绑起来。我们使用了极端值理论(EVT)的技术来估计,到一定的自信程度,几个常数是所学部件的特点,并管理跟踪误差的大小。这确保了计划在运行时能够安全跟踪。我们确认我们的保证在模拟10D象粒体和现实世界中将实验性安全转化为疯狂Flie quadtortortortor和Clearpt Jackal机器人,而忽视模型错误和偏差的基线是不安全的。