We propose a new method for the estimation of a semiparametric tempered stable L\'{e}vy model. The estimation procedure combines iteratively an approximate semiparametric method of moment estimator, Truncated Realized Quadratic Variations (TRQV), and a newly found small-time high-order approximation for the optimal threshold of the TRQV of tempered stable processes. The method is tested via simulations to estimate the volatility and the Blumenthal-Getoor index of the generalized CGMY model as well as the integrated volatility of a Heston-type model with CGMY jumps. The method outperforms other efficient alternatives proposed in the literature when working with a L\'evy process (i.e., the volatility is constant), or when the index of jump intensity $Y$ is larger than $3/2$ in the presence of stochastic volatility.
翻译:我们提出一个新的方法来估计半对称温带稳定的 L\ { { e} vy 模型。 估计程序反复地结合了时间估计器的近似半参数方法“ 快速实现二次曲线变异”(TRQV) 和新发现的对温带稳定过程TRQV最佳阈值的小型高排序近似值。 这种方法通过模拟测试来估计通用的CGMY模型的波动性和Blumenthal- Getoor指数,以及赫斯顿型模型与CGMY跳跃的综合波动性。 当与L\' evy进程(即波动是恒定的)合作时,或在跳动强度指数大于3/2美元时,该方法优于文献中所提出的其他有效替代方法。