I introduce and study a new notion of Archimedeanity for binary and non-binary choice between options that live in an abstract Banach space, through a very general class of choice models, called sets of desirable option sets. In order to also be able to bring horse lottery options into the fold, I pay special attention to the case where these linear spaces do not include all `constant' options. I consider the frameworks of conservative inference associated with Archimedean (and coherent) choice models, and also pay quite a lot of attention to representation of general (non-binary) choice models in terms of the simpler, binary ones. The representation theorems proved here provide an axiomatic characterisation for, amongst many other choice methods, Levi's E-admissibility and Walley--Sen maximality.
翻译:我介绍并研究一种新型的“甲状腺”概念,用于在抽象的巴纳赫空间中,通过一个非常一般的选择模式,在抽象的巴纳赫空间中,通过所谓的一套理想的选择模式,即所谓的一套理想的选择方案。为了能够把马彩票选项放在一起,我特别关注这些线性空间不包括所有“稳妥”选项的情况。我考虑了与阿齐梅德(和连贯的)选择模式相关的保守推论框架,并相当关注普通(非二进制)选择模式在简单、二进制模式中的代表性。 此处所证明的代表性为列维的“E-容许性”和“Walley-Sen ” 最大化提供了一种不言理的特征,包括许多其他选择方法。