Linear perspectivecues deriving from regularities of the built environment can be used to recalibrate both intrinsic and extrinsic camera parameters online, but these estimates can be unreliable due to irregularities in the scene, uncertainties in line segment estimation and background clutter. Here we address this challenge through four initiatives. First, we use the PanoContext panoramic image dataset [27] to curate a novel and realistic dataset of planar projections over a broad range of scenes, focal lengths and camera poses. Second, we use this novel dataset and the YorkUrbanDB [4] to systematically evaluate the linear perspective deviation measures frequently found in the literature and show that the choice of deviation measure and likelihood model has a huge impact on reliability. Third, we use these findings to create a novel system for online camera calibration we call fR, and show that it outperforms the prior state of the art, substantially reducing error in estimated camera rotation and focal length. Our fourth contribution is a novel and efficient approach to estimating uncertainty that can dramatically improve online reliability for performance-critical applications by strategically selecting which frames to use for recalibration.
翻译:从建筑环境的规律性产生的线性视角可以用来在网上重新校正内在和外部摄像参数,但由于现场的不规则、线段估计和背景混乱,这些估计可能不可靠。 我们在这里通过四个举措应对这一挑战。 首先,我们使用PanoContext全景图像数据集[27] 来为一系列广泛的场景、焦距和摄像头所展示的图象投影制作新颖而现实的数据集。 其次,我们使用这个新颖的数据集和约克乌尔班DB[4]来系统评价文献中经常发现的线性视角偏离措施,并表明偏差度度和概率模型的选择对可靠性有重大影响。 第三,我们利用这些发现来创建一个新的在线相机校准系统,我们称之为FR,并显示它超越了先前的艺术状态,大大减少了估计相机旋转和焦距长度方面的错误。 我们的第四个贡献是一种新颖而有效的方法,用来评估不确定性,通过从战略角度选择用于校正校准的框架,可以大幅提高性能批评应用程序的在线可靠性。