Eye movements provide a window into human behaviour, attention, and interaction dynamics. Previous research suggests that eye movements are highly influenced by task, setting, and social others; however, most eye tracking research is conducted in single-person, in-lab settings and is yet to be validated in multi-person, naturalistic contexts. One such prevalent real-world context is the collective viewing of a shared scene in social settings, for example, viewing a concert, film, lecture, sports, etc. Here, we apply mobile eye tracking in a real-world multi-person setup and develop a system to stream, record, and analyse synchronised data. We tested our proposed, open-source system while participants (N=60) watched a live concert and a documentary film screening during a public event. We tackled challenges related to networking bandwidth requirements, real-time monitoring, and gaze projection from individual egocentric perspectives to a common coordinate space for shared gaze analysis. Our system achieves precise time synchronisation and accurate gaze projection in challenging dynamic scenes. Further, to illustrate the potential of collective eye-tracking data, we introduce and evaluate novel analysis metrics and visualisations. Overall, our approach contributes to the development and application of versatile multi-person eye tracking systems in real-world social settings. This advancement enables insight into collaborative behaviour, group dynamics, and social interaction, with high ecological validity. Moreover, it paves the path for innovative, interactive tools that promote collaboration and coordination in social contexts.
翻译:暂无翻译