Normalizing flows are tractable density models that can approximate complicated target distributions, e.g. Boltzmann distributions of physical systems. However, current methods for training flows either suffer from mode-seeking behavior, use samples from the target generated beforehand by expensive MCMC simulations, or use stochastic losses that have high variance. To avoid these problems, we augment flows with annealed importance sampling (AIS) and minimize the mass-covering $\alpha$-divergence with $\alpha=2$, which minimizes importance weight variance. Our method, Flow AIS Bootstrap (FAB), uses AIS to generate samples in regions where the flow is a poor approximation of the target, facilitating the discovery of new modes. We apply FAB to complex multimodal targets and show that we can approximate them very accurately where previous methods fail. To the best of our knowledge, we are the first to learn the Boltzmann distribution of the alanine dipeptide molecule using only the unnormalized target density, without access to samples generated via Molecular Dynamics (MD) simulations: FAB produces better results than training via maximum likelihood on MD samples while using 100 times fewer target evaluations. After reweighting samples with importance weights, we obtain unbiased histograms of dihedral angles that are almost identical to the ground truth.
翻译:标准化流是可移动的密度模型,可以接近复杂的目标分布,例如,Boltzmann分布物理系统。然而,目前培训流的方法要么是寻求模式的行为,要么使用昂贵的MCMC模拟模型事先产生的目标样本,或者使用差异很大的复杂多式联运目标的随机损失。为避免这些问题,我们用麻醉重要取样(AIS)来增加流动,并尽可能减少大规模覆盖的以美元=alpha$-diverence(美元=2美元)的流量,以最小化重度重量差异。我们的方法是流动AIS诱饵(FAB),使用AIS在流动不接近目标的区域生成样本,为发现新模式提供便利。我们将FAB应用于复杂的多式联运目标,并表明我们可以非常准确地在以往方法失败的地方对其进行匹配。据我们所知,我们是第一个只使用非常规目标密度的分子的布尔茨曼分布,而没有获得通过分子动态模拟(MD)生成的样本。FAB生成的样本几乎是透度,而我们利用最短的样本在最短的模型上获得比等质量的结果。